You are viewing shkrobius

Quizzing the Anonymous - Riding a bicycle mathematically
May 2nd, 2014
12:47 pm

[Link]

Previous Entry Add to Memories Share Next Entry
Riding a bicycle mathematically
...If integers a and b are relatively prime, then they individually divide n if and only if their product ab divides n.

This fact is well illustrated by the use Turing is said to have made of it. The sprocket wheel of his bicycle had a faulty tooth and the chain a faulty link, and unless he was pedalling very fast when the faulty parts meshed, the chain would fall off. So he counted the number, say a, of teeth on the wheel and the number, say b, of links on the chain and found that a and b were relatively prime. Between successive meetings of the bad tooth and link the sprocket wheel would in consequence go through b cycles, as the chain went through a cycles. Turing is said to have pedalled along counting, on every bth cycle of the sprocket wheel giving the burst of speed necessary to carry him past the danger point. https://dl.dropboxusercontent.com/u/43807687/math/Billingsley%20Primes%201973.pdf

(2 comments | Leave a comment)

Comments
 
[User Picture]
From:freedom_of_sea
Date:May 3rd, 2014 09:28 am (UTC)
(Link)
метафора с цепью была использована в Криптономиконе, утверждалось, что так работает Энигма
[User Picture]
From:shkrobius
Date:May 3rd, 2014 02:16 pm (UTC)
(Link)
Я тоже это заметил: велосипед как бы предвосхищает тьюринговские цепи и Энигму, подобно ньютоновскому яблоку, которое то же самое делает с теорией тяготения. Я полагал, что эта история выдумана в педагогических целях (например, Ианом Стюартом, который ее запустил в Nature в шестидесятые годы) но, оказывается, что-то с велосипедом все же было, о нем рассказал Гуд
http://en.wikipedia.org/wiki/I.J._Good
Мне всегда хотелось проследить генезис такого рода историй, возможно, тьюринговский велосипед - хороший пример, где это еще возможно сделать.
My Website Powered by LiveJournal.com